打磨是一种精加工过程,包括从工件上去除多余的材料,产生光滑的表面。它是的一个亚型材料去除应用这是制造过程中也是重要的步骤之一。打磨任务通常被认为是不受欢迎的,因为它们的困难和乏味的性质,这就是为什么机器人自动化是的解决方案。打磨机器人就像FANUC M-710ic/50可以与集成臂端工具(EAOT)这是定制的,以完成任何打磨应用要求。
ABB IRB 4600/40-2.55提高打磨加工的质量和精度。机器人打磨工作需要对工件施加正确的力。如果用力过猛,产品可能会受损,材料也会浪费。如果施加的压力太小,则浪费生产时间。打磨机器人解决了这个问题,因为它们配备了力传感器这使他们能够检测和应用正确的压力大小的每种类型的零件被打磨。
市场要求铸件的低成本和大批量后处理,在批量铸造生产加工中,快速的制造速度可以大大缩短产品加工时间.为了实现高产量和低成本,需要快速的工作节奏。反过来,这需要快速响应。确保快速响应是当前提高工作速度必须解决的问题之一。没有快速的响应,很难实现抛光产品的批量生产或低成本生产。铸件表面的部分不需要高精度,可以牺牲以提高速度。当铸件与其他零件,要求精度高。同时,一般铸造加工的零件表面较薄,这是薄脆性铸造零件的特点。然而,由于使用脆性材料和复杂的表面,薄脆性更严重。目前,大多数打磨技术都是针对较重的零件,因此薄而脆的工件磨技术提出了新的要求。需要力控制技术中的准确和快速响应,以及用于打磨工件的的感知和规划策略。
机器人打磨由于其灵活性、智能性和成本效率,尤其是与当前主流制造模式相比,被认为是实现复杂零件和智能加工的替代方案。在过去的一、二十年里,机器人打磨技术的发展呈现出两个:一个旨在解决小尺寸复杂曲面的精密加工问题,另一个强调大尺寸复杂结构的加工。为了实现这两种不同类型复杂零件的智能打磨,研究人员试图关键技术,开发相应的加工系统。本文的目的是对复杂零件的机器人打磨的各个方面进行系统的、批判性的和的综述,特别是集中在三个研究目标上。